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An exact solution for the gravity curvature (Bullard B) 
correction 

T. R. LaFehr* 

ABSTRACT 

The complete Bouguer reduction includes, in addi- 
tion to the simple Bouguer slab correction (Bullard A), 
both curvature (Bullard B) and terrain (Bullard C) 
corrections. A new closed-form formula for the curva- 
ture correction is derived for which the calculated 
values differ from those published by Swick by more 
than 0.5 mGa1 for high elevations. These corrections 
reduce those of an infinite slab (Bullard A) to that of a 
spherical cap having a surface radius of 166.7 km. The 
spherical cap produces a lesser effect than the infinite 
slab because of the “truncation” of that part of the 
slab above the earth and extending to infinity, but it 
produces a greater effect than the slab because of 
subslab earth resulting from curvature. The physical 
significance of the correction lies in the combination of 
these two differences, which are each a function of 
elevation. The Bullard B surface radius (166.7 km: 
outer radius of the Hayford-Bowie system) is reaf- 
firmed by the exact formula to be appropriate for 
exploration surveys. Three series approximations are 
presented and compared, but the exact Bullard B 
formula is very efficient and easy to program for 
routine data processing. 

INTRODUCTION 

The purpose of the Bullard B correction as a step in 
producing the Bouguer anomaly is to convert the geometry 
for the Bouguer correction from an infinite slab to a spherical 
cap (Figure 1) whose thickness is the elevation of the station 
and whose radius (arc length) from the station is 166.735 km 
(the outer radius of the Hayford-Bowie terrain system). 
Schleusener (1953) developed a curvature formula to show 
the inadequacy of the infinite slab, but failed to recognize the 
correction procedure previously established by Bullard 

(1936) and Swick (1942). Curvature corrections are not 
discussed by Nettleton (1976), Dobrin and Savit (1988), 
Telford et al. (1976), Parasnis (1986), or Jacobs et al. (1959). 
A frequently quoted source for this correction is Swick 
(1942), in which a table derived from Bullard (1936) gives 
values only to 0.1 mGa1. Also, the values are in error (by up 
to 0.5 mGa1) and the elevation sampling is coarse (up to 500 
m) and limited to 5000 m. Snyder’s (1968) incorrect formula 
led to erroneous tabulated values for South Park, CO, which 
are, however, very close to those of Swick. Takin and 
Talwani (1966) took into account earth sphericity while 
suggesting a single computation (combining the terrain cor- 
rection with the simple Bouguer correction) for the complete 
Bouguer anomaly. Although they refer to Bullard’s (1936) 
paper, they did not propose that the Bullard or Swick use of 
a curvature correction (i.e., applied to the “Bullard A”) be 
implemented. Heiskanen and Vening Meinesz (1958, p. 
155-164) discussed the curvature “b” correction and gave 
its value (the same as Bullard) for a few elevations up to 1500 
m. It is probably not surprising that this correction has been 
frequently neglected for exploration surveys. 

The geophysical exploration community is largely un- 
aware of the Swick/Bullard curvature discrepancy. How- 
ever, the U.S. Geological Survey recognized through an 
internal memorandum in the 1960s (Plouff, personal commu- 
nication) that the Bullard values do not closely agree with 
Lambert (1930). Lambert presented a closed-form solution 
to the curvature problem intended for isostatic reductions 
different in form from the one presented here. Although it is 
somewhat puzzling that Bullard (1936) chose not to avail 
himself of the Lambert (1930) formula, using instead numer- 
ical values tabulated from Cassinis and others (1937), it is 
less mysterious that the gravity data reduction community, 
especially explorationists, would embrace the Bullard ap- 
proach of defining the Bouguer anomaly. Lambert (1930) did 
not address the problem from the exploration point of view. 
The USGS developed a power-series approximation (see 
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below) to the Lambert formula and replaced their use of the 
Swick values with those calculated by the approximation. 

THE BULLARD B EXACT FORMULA 

I derive here a new version of the curvature formula in 
closed form (Appendix), which is 

BE = 2~r~p(@1- AR), (1) 

where BB, y, p, h, and R are the Bullard B correction, the 
gravitational constant, density, elevation (from sea level), 
and the earth radius to the station (R, + h, where R, is the 
earth’s radius), respectively; 27~yph is the familiar simple 
Bouguer slab formula; p and A are dimensionless coefficients 
defined in the Appendix. Table I gives the values for the 
Bullard B correction to within one microgal for an interval of 
100 m for elevations from sea level to 6300 m. These are 
plotted in Figure 2. The calculations are based on an earth 
radius of 6371 km and a cap density of 2.67 g/cm3. 

Simple Bouguer Infinite Slab 

Spherical Cap 
Surface Radius Coincident with Outer Radius 

of Hayford-Bowie Terrain Zones A-O 
166.735 km 

FIG. 1. Geometry of spherical cap in relation to infinite slab. 
The Bullard B correction modifies the simple Bouguer slab 
value (Bullard A) to that of a cap having a surface radius of 
nearly 167 km and a thickness the same as that of the infinite 
slab (station elevation). This is equivalent to removing all of 
the slab above the earth’s surface and beyond 167 km 
whether above or below the earth’s surface (i.e., all of the 
slant-shaded zone) and adding the part of the cap below the 
slab (i.e., the solid black zone). That part of the cap shown 
in stipple pattern is common to both the cap and the slab and 
therefore does not enter into the Bullard B correction. The 
sum of the stipple zone and the black zone constitutes the 
entire spherical cap. All dimensions are greatly exaggerated 
to clearly show the nature of the correction. 

An examination of Figures 1 and 2 shows that, for low 
elevations, part of the spherical cap directly underlying the 
infinite slab (black zone in Figure 1) dominates the correc- 
tion (i.e., the truncation effect is relatively small). For an 
elevation of 4150 m, the correction is nearly zero, so that the 
truncation effect is balanced by the cap material at the base 
of the infinite slab. For higher elevations, the truncation 
effect dominates. The physical nature of curvature effects 
are further discussed by Schleusener (1953) and Heiskanen 
and Vening Meinesz (1958). The former points out the 
inadequacy of the simple Bouguer slab, while the latter 
indicates the need for Bullard’s correction. 

The difference graph shown in Figure 2 indicates that this 
correction in high-precision engineering surveys (and other 
applications) may be as high as 14 microgals per meter of 
elevation difference at low elevations. This difference is a 

Bullard B 
Correction (mGal) 

Difference in Bu 

Elevation (km) 

FIG. 2. Bullard B correction and its first difference 

Table 1. Values of the Bullard B correction 

h On) 
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(mEI) h b-d 
BB 

(mGa1) h (m) 
BB 

(mGal) h (ml 
BB 

(mGa1) 

0.000 1600 I .439 3200 1.071 4800 -1.099 
0.143 1700 1.469 3300 0.988 4900 - 1.295 
0.279 1800 1.491 3400 0.898 5000 - 1.497 
0.407 1900 1.507 3500 0.801 5100 - 1.707 
0.529 2000 1.516 3600 0.697 5200 -1.923 
0.644 2100 1.518 3700 0.586 5300 -2.147 
0.751 2200 1.512 3800 0.468 5400 -2.377 
0.852 2300 I .500 3900 0.343 5500 -2.615 
0.945 2400 1.481 4000 0.21 I 5600 -2.859 
1.032 2500 I .454 4100 0.072 5700 -3.111 
1.111 2600 I .420 4200 -0.074 5800 -3.370 
1.183 2700 1.380 4300 -0.228 5900 -3.635 
I .248 2800 1.332 4400 -0.388 6000 -3.908 
I .307 2900 1.278 4500 -0.555 6100 -4.188 
I .358 3000 1.216 4600 -0.729 6200 -4.475 
1.402 3100 I.147 4700 -0.911 6300 -4.768 
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function of the vertical separation of stations and not of their 
horizontal separation. 

A comparison between the widely used Bullard values 
tabulated by Swick and others and those calculated by 
equation (1) is given in Figure 3. The SwickiBullard values 
are generally too large and not smooth. 

THE BULLARD B SURFACE RADIUS 

It is interesting to question the selection of 166.7 km as the 
surface radius of the spherical cap, as very little can be found 
in the literature to justify this choice. The selection of 
166.735 km (Bullard, 1936) for the spherical cap’s surface 
radius (which is the outer radius of the Hayford-Bowie Zone 
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FIG. 3. Comparison between Swick and LaFehr calculations. 
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FIG. 4. Curvature corrections for caps of different surface 
radii. 

0) was based on minimizing the difference between the 
effect of the cap and that of an infinite horizontal slab for a 
significant range of elevations. Figure 4 shows calculated 
curves, based on equation (1). similar to Figure 2 for 
spherical caps whose surface radii are 50, 100, 167, 200, and 
250 km. The Bullard selection shows the least departure 
from the zero correction axis. These curves result, of 
course, from obvious changes in the inbalance between the 
truncation and subslab effects discussed above. Figure 5 is a 
chart showing the standard deviations from zero of the 
corrections for elevations from sea level to an elevation of 
4000 m. for the calculations displayed in Figure 4. A mini- 
mum is achieved for the 167 km cap. A more detailed study 
using equation (I) (in which the surface radii are varied in 
increments of only one meter) shows that the Bullard radius 
produces a standard deviation minimum for a range of 
elevations from sea level to a few meters less than 4000. 
Thus, though somewhat arbitrary, the 167 km cap was 
appropriately selected and, of course, is necessarily the 
outer radius of the Hayford-Bowie Zone 0 (Swick, 1942); 
166.7 km should be considered the standard distance for this 
parameter (LaFehr, 1991). 

LATITUDEDEPENDENCEOFTHEBULLARDB 
CORRECTION 

The thickness and surface radius of the cap are, of course, 
independent of latitude, but the curved shape of the cap is a 
function of the central angle (see Appendix) and, therefore, 
of latitude. Although the Bullard B Correction is defined for 
a specific surface radius, as discussed above, it is implicitly 
assumed that it is computed for an earth radius at midlati- 
tudes and that differences with respect to latitude changes 
should not be large. To check this assumption, we may use 
equation (1) to calculate the effects at the extreme latitudes 
and compare the results with those given in Figure 2. Figure 
6 shows that only at high elevations would we encounter 
discrepancies of possible importance in high-precision sur- 
veys, but equation (1) can be used to accept the earth radius 
appropriate to the station latitude, if the investigator feels 
this to be important. 

APPROXIMATIONS TO THE BULLARD B CORRECTION 

As mentioned above, the U.S. Geological Survey (Oliver, 
1980) developed a power-series approximation for the Bull- 
ard B correction. It is of the form 

FK. 5. Standard deviation of curvature corrections with 
respect to a zero correction for caps of different surface radii 
(mGa1). 
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BB =Ah + Bh” + Ch3. 

Their coefficients appear to have changed slightly, depend- 
ing on choice of elevation units and significant figures 
(Plouff, 1990, personal communication) over time but those 
producing the least error are used in this discussion. Whit- 
man (1990, personal communication) has developed an ap- 
proximation derived from equation (1) of this paper in terms 
of actual earth parameters: 

BB = 2Typh{a/2 - q[l + li (~cz)]} 

(see appendix for definition of terms). Whitman’s approxi- 
mation can also be cast as a power series, the coefficients of 
which may then be compared with those of the U.S. Geo- 
logical Survey. I have calculated a third set of power-series 
coefficients (solely to minimize the error), and the plot of the 
three approximations discussed in this paragraph are shown 
in Figure 7. The coefficients used in this calculation are 

Difference in Cuivature Conecliins Between Given and Mid-Laliiudes 

Bullard B (at 45 degrees)+ 

-10 1 
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Elevation (m) 

FIG. 6. Effect of latitude on the curvature correction. 
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FIG. 7. Errors as a function of elevation for three 
approximations. 

Coefficient USGS LaFehr 

A x 1O-3 1.464 1.46308 
B x lo-’ 3.533 3.52725 
c x lo-l4 4.5 5.1 

Each of the tt.ree approximations may be improved by 
adding terms. However, the exact formula (equation 1) when 
put into working form (see Appendix) is very efficient and 
not at all difficult to implement in standard data processing 
routines. Personal computers and hand-held calculators pro- 
vide more than the needed eight-place precision without 
resorting to any special programming. These approximations 
are shown here for comparative and historical purposes, but 
are not actually needed. Whitman’s formula (especially in 
expanded form) indicates the physical basis for contributions 
to the correction, but all relevant physical understanding 
may be gained by Figures 1 and 2 and the associated 
discussion at the beginning of this paper. 
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CLOSED-FORM ATTRACTION FOR THE SPHERICAL CAP 

In Figure A-l, the spherical earth near the station is divided into three parts: A is the spherical cap for which we wish to know 
the attraction on its surface at its center. B is a spherical segment of the earth whose radius is the normal mean sea level and 
whose base is fixed by the surface distance of the spherical cap (in the Bullard B case, this is 166.7 km). C is the nearly triangular 
(in cross-section) shaped ring which fills out the spherical cap to a spherical segment of the earth whose top is the earth’s surface 
(having a radius of R = R, + h, where R, is the normal earth radius to mean sea level and h is the elevation of the station) and 
whose bottom is the same as the bottom to B. This base has a vertical displacement from the station (which we take to be the 
origin) of B. The attraction of the spherical cap is the sum of the three zones (the first integral, below) less the effects of zones 
B and C, which are represented by the second and third integrals, respectively. As shown in Figure A-l, T is the vertical 
distance between the station and the place where the earth cone intersects with the outer surface radius of Zone 0 in the 
Hayford-Bowie system (also the Bullard B arc length). Of course z is the variable vertical distance measured downward from 
the station, and dz is the differential thickness of each circular disk lying within the shaded areas of Figure A-l; y is the universal 
gravity constant, p the density of the topography, and 2a the angle subtended at the earth’s center by the spherical cap. 

z 

‘- (z2 + R,: - (R -z)')"' 
dz 

gsc = 2Tryp 
Z Z 

(z’ + (R -z)* tan* a)“* -(z'+R*-(R-z)~)~~~ 
dZ 

Integrating and substituting the limits of integration, we have 

W is the location of the station at which z = 0 for purposes of the derivation. 

R, is the earth’s normal radius to sea level. 

R is the earth’s radius to the station. 

h is the elevation of the station, but measured from the station to R, (sea level). 

B is the vertical distance measured from the station to the horizontal base plane. 

T is the vertical distance measured from the station to the horizontal plane which passes 
through the top point of 0. 

a is the half angle subtendedat the earth’s center by the section of the earth’s surface at 
sea level for which the outer distance from the station is normallv taken to be 166.7 km 
(or the outer radius of the Hayford-Bowie Zone 0). 

@ 
is the shaded area which represents the first part of the total spherical sector to be 
removed in the curvature calculation. 

0 
is the shaded area which represents the second part of the total spherical sector to be 
removed in the curvature calculation. 

FG. A-l. Cross-section of a spherical cap indicated by the shaded area A. 
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2(2(R,2 - R2) - 2RB) 

3(2R)* 
R;-R2+2RB- 

where a = R2 tan2 CY, b = -2R tan2 (Y, and c = 1 + tan2 CY. The limits and input parameters for the calculations are: 

T = R - R cos a, B = R - R. cos a, a = SIRo, S = Bullard B surface radius. 

By noting that the second terms in the first and the last integrals are the same, allowing for the canceling of appropriate terms, 
and simplifying, we now have a solution in closed form for the spherical cap: 

ssc = 2lryp 

i 

,(I-,+;)-; 1 (S2 - 6 - cos* 2 + 6 (Y cos sin (o/2) (Y + 3 + ~0s’ 4 sin” a)d(cos (092) cx - 8)’ + sin’ 01 1 
- 3 sin* (Y cos (Y log, 

2(sin (o(i2) - sin2 ((-r/2)) 

cos (Y - 6 + (COS a - S)* + sin* cx 
1 

3 (A-1) 

where 6 = Rn/R and IJ = h/R. 
We note that for ftxed cx and Ro, the simple working equation [equation (l), given in the paper] may be written for very rapid 

calculation: 
Let p. = (1137’ - q) and 

1 
A=; (d+“fs+62)[(f-8)z+k]1’2+~+,log, 

1 

n 

1 f-8+[(f-s)*+k]l’* ’ 

where d = 3 cos’ (Y - 2, f = cos 01, k = sin* a,p = -6 cos* cx sin (d2) + 4 sin” (o/2), m = -3 sin* cx cos a, and n = 2 [sin 
(o/2) - sin* (o/2)]. 

The calculations which produced Figures 2 and 3 assumed a normal radius R, of 6371 km and a Bullard B surface radius S 
of 166.735 km. Variations with respect to latitude and with respect to the surface radius S are discussed in the paper. 
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