
Introductory Programming Tips

Paul Gettings Derrick Hasterok Marshall Bartlett

January 26, 2005

1 Introduction

This is a collection of hard-won, probably useful, freely-given tips on how to
program for scientific problem-solving. These tips and ideas may (or may not)
scale to applications, databases, or other aspects of software engineering. Soft-
ware engineering, more commonly called programming, is an art more than a
science. There is no well-defined, rigorously-proved, method for solving any pro-
gramming problem. Rather, programming is a creative application of a toolset
to a given problem.

With experience, a programmer’s toolset increases in scope and complexity,
allowing more difficult problems to be solved with faster algorithms in less time.
The initial toolset is generally acquired in an introductory programming class,
which typically limits itself to the nuts-and-bolts syntax of a given language. A
small hint of the underlying art is often introduced, although not always clearly,
in such a class.

This document does not seek to address any of the nuts-and-bolts aspects
of programming. These change with language and programming style, and are
very specific and time-sensitive; the language of today is forgotten tomorrow.
Instead, the tips presented here are a higher-level abstraction of what and why,
rather than how, to program.

1.1 Target Audience

These tips are directed at new programmers, not experienced ones. Experienced
programmers will have already learned all these tips (probably the hard way, as
the authors did). The hope is to allow new programmers to gain the benefit of
experience, without the otherwise-necessary time investment of making all the
mistakes that would lead to these tips.

Like any such set of tips, these ideas are not hard rules that must be obeyed;
discard, modify, and refine as necessary. The goal is a working, maintainable,
program that solves the problem posed. Any path to that goal is acceptable,
but some may be faster than others. Here are a few tips to speed the trip.

1



2 How to build algorithms

Before beginning to write a program to solve a given problem, the first step is
to determine what sort of algorithm will be used to solve the problem. This, of
course, should depend on the type of problem being solved (computation, sort-
ing, data formatting, etc.), the available computing power (disk space, memory,
CPU, etc.), and the programming environments/languages/toolkits available.

The tips in this section are designed to help guide the choice of algorithm
before actual coding starts. Pick a better algorithm at the beginning, and the
rest is much easier.

2.1 Problems are rarely unique

Most scientific problems fall into a fairly small class of very general problems
that have been identified and solved for many years. Therefore, there is (very)
rarely the need to design an algorithm from scratch. This is a good thing, since
designing an efficient, implementable, algorithm is a lot of work.

Since the general problems have been solved many times before, there is
always a selection of algorithms and implementations available to solve a par-
ticular problem. The first trick is to extract the general problem out of the
specific one. Once the general problem class is determined, then the literature
will provide various algorithms; choose the fastest/best/cheapest alternative
that will solve the special case that is a particular problem.

Finding the general problem from the specific is not trivial, and may require
some very lateral thinking. For example, an algorithm to fill all the entries of a
geophysical grid inside an arbitrary polygon appears hard, until one realizes this
is identical to the flood-fill problem in graphics, which is well solved. This type of
solution comes from abstracting the particular problem space (geophysical data
grid) to a more general level (grid of values), and then comparing to a construct
in computer science (video display of pixels). A list of possible abstraction
techniques is infinite, and not addressed here; if stuck, explain the problem to
someone else unfamiliar with it, and see what they can find.

Just as there is skill required to read and understand geoscience papers,
there is a base level of knowledge required to understand computer science
papers. This level of knowledge is not hard to acquire, and very valuable when
looking for solutions to general programming problems. Web resources, friends
in computer science, and other geoscientists with computer expertise are places
to start acquiring the necessary CS background.

Never forget that computer science works on all computable problems, and
all scientific problems fall into some realm of computer science. Some are in
very strange places, far from the study of numerical algorithms.

2.2 Computers count and add well

Computers are powerful adding machines equipped with some memory. How-
ever, they are terrible at symbolic manipulation and pattern recognition. Hence,

2



algorithms should emphasize simple arithmetic rather than abstract mathemat-
ics. This is the opposite of an algorithm designed for theoretical mathematics.
Algorithms for programming should use the memory and fast computation speed
to replace symbolic manipulation.

2.3 Bookkeeping is hard

Most scientific problems solved on computers are more bookkeeping than com-
putation; typically, a scientific problem boils down to performing a relatively
simple computation on huge sets of numbers. This is a direct result of the pre-
vious point; computers add and remember well, so efficient algorithms use these
strengths to replace symbolic math.

Humans are poor at bookkeeping, which makes designing large systems dif-
ficult. Data abstraction, structures, and other programming constructs exist
to ease bookkeeping; learn and use them in whatever environment is available.
Spend time on the bookkeeping system, making it clear, concise, and efficient,
and the rest of the problem will be much easier to code (e.g. I/O and compu-
tations).

2.4 Memory is fast, disk is slow

All computers have both memory and disk, typically in a ratio of 1 to 100. The
penalty of disk size is speed. Disk is typically 100 (or more) times slower than
memory. The performance gap is widening faster than the capacity gap, and
has been since the introduction of the solid-state computer.

Hence, minimize disk access in any program. Keep results in memory if
possible, recompute at need if necessary, and store on disk only if unavoidable.
The desire to keep all necessary parts of a problem in memory at once often
requires some careful management of data structures to pack the most data into
the smallest space. This concern should not entirely trump maintainability, but
can only be ignored on small problems.

In addition to the main memory of the computer, there is also a very fast, but
small, memory on the CPU itself, called the cache. This is typically quite small
(100-300 kB), but can be used to very quickly retrieve constants and intermedi-
ate results. Compilers (and many interpreted languages) can now automatically
make good use of the cache to speed computations while minimizing memory
access. The very largest problems will need to optimize cache storage as well
as memory storage, but such advanced techniques are beyond the scope of this
article.

3 How to implement algorithms

Implementation of algorithms is just as hard as choosing or designing a new
algorithm, and has its’ own set of tips and tricks.

3



3.1 Be lazy

Most algorithms are already implemented in a nice, fast function. Rather than
writing a new implementation, which will have to be verified, then tuned and re-
verified, adapt an existing implementation. Particularly for common operations
(e.g. SVD of a matrix), fast, well-tested implementations exist for virtually
every language (that doesn’t have it built in). Use these implementations and
spend more time on science.

Good implementations are as general as possible, to allow maximum reuse.
However, more general solutions are often not as fast, so some problems benefit
from very specialized versions that can exploit symmetries or limitations of a
problem (e.g. sparse matrices for large systems). Be aware of the assumptions
and specializations built into any implementation, and make sure that these do
not compromise the results in a particular problem.

3.2 Start with loops

Since most problems are simple computations applied to many numbers, they
lend themselves to coding as loops. Loops are often not the fastest possible
solution. Therefore, start with a prototype code with loops, to make sure the
algorithm works and will solve the problem. Then, start replacing simple loops
with more efficient/faster options (e.g. vector ops in Matlab). This is best
done in pieces, with each loop being replaced by a function/statement that
implements the efficient solution.

As each loop/iteration is replaced, retest the code on a known input/output
set to verify the new version. This bootstrapping can produce fast code that is
also maintainable, as the loop replacement can stop at exactly the point where
the code is ”fast enough”, leaving maximum transparency.

3.3 Maintainability over efficiency

Maintainable code is code that can be changed, modified, and reworked well
after the original coding effort. Efficient code is small, clean, and fast to run.
Writing maintainable, efficient code is nearly impossible for most problems; the
techniques for maintainable code often run counter to the techniques for efficient
code.

Therefore, do not expect to write maintainable, efficient code for real prob-
lems. Instead, strive to write maintainable code that is ”efficient enough”.
Compute cycles are very cheap, and only get cheaper. This tips the balance in
favor of maintainable code, as more compute speed can always be borrowed or
purchased.

There is a final point to consider when considering maintainability or effi-
ciency. Virtually all programs written for scientific work will last vastly longer
than the original programmer intends. Programs represent the solution of a
problem, and most problems recurr in science. A near-to-hand, proven solution
is increasingly valuable the second, third, and hundredth time a problem recurrs.

4



Maintainable code will lend itself to small tweaks and ports, so a scientist can
continuously tweak proven code for new problems, rather than having to start
from scratch each time.

3.4 What is maintainable code?

Few programming courses teach examples of maintainable code. The goal of
maintainable code is not only to run correctly, but also to be readable and
understandable by someone who has knowledge of the problem, but not the
program. Hence, maintainable (“clean”) code is readable like a (boring) book,
with no surprises or hidden magic.

There are many ways to write maintainable code, and it is an art like the
design of algorithms. There are some common tips for writing code that makes
all code more maintainable for minimal effort.

3.4.1 Comments, and the evils of hyper-commenting

Clean code should have comments, but only as many as necessary. Documenting
the purpose, general algorithm, and strange variables (and units) is useful for
all functions. Documenting the magical bits (clever, but unclear operations or
operations with odd assumptions) is required.

Do not document every line of code, as most are perfectly clear on their own
(in context). Additional useless comments add fluff and clutter to the code, and
detract from readability.

Comments are precious; use them wisely.

3.4.2 Functions are your friends; use them well

Any chunk of code done more than once should be a function. Function calls
are cheap, and good compilers can inline many functions anyway. Functions
make algorithms cleaner, as they provide an easy abstraction from some details
to a more general view.

Functions can also segregate complicated code into a single location for test-
ing and maintainance. This also applies to debugging; if a repeated block is
found to have an error, a function allows a single fix to propogate throughout a
program automatically.

In general, any chunk of code done more than once should be a function;
let the compiler inline the function for speed, and keep the readability of clean
code.

3.4.3 Small is beautiful

Small functions are better than large, simply because anything that is off a page
is hard to remember. Hence, it is better to break a large chunk of code into a
number of small functions, even if they are called only once. In this case, the
function call overhead is negligable, and the readability is greatly enhanced.

5



The use of small functions also forces a more fine-grained structure to the
program, which eases abstraction and algorithm understanding.

3.4.4 The power of names

Avoid the use of very short, very cryptic names for important variables. Loop
counters, temporary storage, or universal variables can have short names (“i”
or “temp”), but these variables should never be used outside a very local scope
(∼20 line blocks).

Use case and underscores (allowed in all modern languages) to make mean-
ingful variable and function names. Someone with no knowledge of the program
structure should be able to take any function, and deduce from the names and
comments alone the purpose, scope, and type of all variables and function calls.

3.4.5 Reject globalization

Do not use global variables unless absolutely necessary. All modern languages
have data structures of some sort, which can be used to transfer large numbers of
parameters in a convenient way. This removes the major use of global variables.

Global variables can form very difficult-to-track bugs if they are corrupted in
very different parts of a program. Use of global variables in functions can lead
to terrible side-effects of a function call that can take days to find. All of these
possible problems are avoided by simply using local variables in all functions
and programs.

Note that Fortran, in particular, makes most variables global by default.
This is a significant problem, and is a significant reason to avoid old dialects
of Fortran (pre-F90). Modern languages (F90 or later, C, Java, Matlab, etc.)
have local variables in functions if not everywhere by default. Be very careful
in the use of global variables in any language.

3.4.6 Programs should not be Choose-Your-Own Adventures

Early programming languages made extensive use of the GOTO statement to
change program flow, as early languages did not have the powerful function-
definition, subroutine, and conditional loop constructs of modern languages.
This is particularly true of Fortran, which still has GOTO statements pervading
new code written today, to the great pain and agony of maintenance program-
mers everywhere (and everyone is a maintenance programmer). While GOTO was
a necessary evil in the early days of programming, it is no longer a statement to
be used in new code (there is a handful of advanced, unique exceptions, which
will be clear when encountered).

Modern languages, such as C/C++, still include a GOTO statement in the
language, but its’ use is highly deprecated (frowned upon). The evils of using
GOTO are apparent to anyone who has ever looked at complicated Fortran 77
codes; there are hundreds of GOTO statements that jump throughout the code,
making it extremely difficult to determine the actual execution path of the pro-
gram. This makes it very difficult to determine the state of the program at

6



a given point, and hence makes debugging and maintenance orders of magni-
tude harder. This is the very definition of opaque code; code which is nearly
impossible to understand and reverse-engineer, and hence nearly impossible to
maintain.

Therefore, while GOTO may exist in a given language, it should never be used.
Constructs which were done with GOTO are more clearly done with functions,
subroutines, and loops. Anyone writing something other than an operating
system kernel should never have a need for GOTO.

4 Summary

For ease of reference, a summary of the tips discused above:

• Algorithm Design Tips

– Problems are rarely unique - Find the general problem from your
specific one, and then adapt a general solution to the specific problem

– Computers count and add well - Choose solutions that trade arith-
metic for complex math

– Bookkeeping is hard - Use data structures to ease the monumental
bookkeeping required in most problems

– Memory is fast, disk is slow - Use memory instead of disk if possible;
keep data as small as possible to minimize disk access

• Algorithm implementation tips

– Be lazy - Adapt existing codes rather than start from scratch; codes
built from scratch must be verified and optimized

– Start with loops - First make an algorithm work with simple-to-
understand loops, then optimize to more efficient versions (e.g. vec-
torized computations); stop optimizing when the code is “fast enough”
for the problem

– Maintainability over efficiency - Compute cycles are cheap, program-
ming time isn’t

– Tips for Maintainable Code
∗ Comments, and the evils of hyper-commenting - Comments are

precious, don’t waste them on obvious code; wrong comments
are worse than none at all

∗ Functions are your friends; use them well - Anything done more
than once is a function

∗ Small is beautiful - Turn big functions and code blocks in many
small ones

∗ The power of names - Name variables, functions, etc. with mean-
ingful identifiers; case and underscores can break apart words in
a name

7



∗ Reject globalization - Use global variables only when unavoid-
able; data structures and function parameters make global vari-
ables almost useless

∗ No Choose-Your-Own Adventures - Do NOT use GOTO, ever.

The tips and techniques presented here are by no means an exhaustive list of
good programming practice, but they will help produce code than is fast enough
to solve a problem, yet understandable years from now. This is necessary, since
code written today will likely be used decades from now, and will need to be
adapted, ported, and fixed on machines undreamt today.

8


